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Selfduality in triplet Potts models 

I G Entingi 
Physics Department, King's College, Strand, London WCZR 2LS, UK 

Received 5 May 1975 

Abstract. We obtain a class of self-dual q-state models generalizing the triangular lattice 
triplet Ising model in the same way that the standard q-state Potts model generalizes the 
self-dual square lattice Ising model. For four-state models we find an additional class of 
triplet models that are self-dual at a single temperature in analogy with the Ashkin-Teller 
model. 

1. Introduction 

I t  has become apparent that two-dimensional lattice models can exhibit extremely 
diverse critical behaviour. One of the best known of these systems is the eight-vertex 
model which was shown to have its critical exponents varying continuously with the 
interaction strengths (Baxter 1971). Jungling and Obermair (1974) have shown that the 
eight-vertex model can be represented by an Ising model with competing one-spin 
and two-spin interactions, so that the property of continuously varying exponents does 
not depend on the occurrence of multi-spin interactions. It appears that in two dimen- 
sions the critical exponents of the q-state Potts model (Potts 1952) vary continuously 
with q. (The random cluster formulation of Fortuin and Kasteleyn (1972) is used to 
define the Potts model for non-integral 4.) 

There is very little guidance as to how all these two-dimensional models can be 
classified, although the concept of weak universality classes having fixed values of ex- 
ponent combinations such as B/v, 6, (2 --cL)/v etc (Suzuki 1974) is a possible beginning for 
a classification. In view of the apparent importance of the symmetries of a model in 
understanding its critical behaviour, models having particularly high symmetry may 
repay investigation. As an example, Enting (1975) has suggested that the four-state 
standard Potts model has such high symmetry that the critical exponents could be 
derived from general exponent relations. 

In the present work we consider the special symmetry of models that are self-dual 
so that the high-temperature partition function can be obtained from the low-temperature 
partition function by a simple change of variable. The earliest example was the square 
lattice Ising model (Kramers and Wannier 1941) which was generalized to the square 
lattice q-state Potts model by Potts (1952). It is also possible to obtain a self-dual model 
on a triangular lattice by considering interactions proportional to the product of trip- 
lets of Ising spins (Merlini and Gruber 1972, Wood and Griffiths 1972). 

We show here how the triplet model can be generalized to a self-dual q-state triplet 
model and discuss alternative ways of formulating the duality transformation. Section 2 
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discusses the model and the direct graphical transformation. Section 3 extends these 
results to a triplet Ashkin-Teller model analogue. Section 4 formulates the q-state model 
in a random cluster formulation. 

2. Graphical expansions and transformations 

In most graphical expansions for lattice models, the graphs are built from elements 
that cover the sites involved in the corresponding interactions. For example, one-spin 
(field) interactions are represented by points and two-spin interactions are represented 
by lines. For high-temperature expansions the graphs typically represent the actual 
contributions to exp( -fix), while for low-temperature expansions the graph elements 
represent perturbations from some ground state. 

The individual graph elements, the points, lines, etc, are combined to form graphs 
that are usually subject to some constraint (0 4 considers ‘unconstrained’ expansions). 
A typical constraint is that of the zero-field spin $ Ising model which has the requirement 
that all allowed graphs shall have an even number of lines meeting at  each vertex. 
Wegner (1973) has shown how such local constraints can be used to generate transfor- 
mations to a new set of local variables, and a new set ofconstraints describing the graphi- 
cal expansion of the transformed system. For self-dual models we want a transformation 
to an equivalent set of local variables and an equivalent set of constraints. 

For the q-state model with triplet interactions the basic graph elements are triangles 
labelled 0 to q -  1. For both high- and low-temperature expansions we propose the 
constraint: the sum of the indices of the six triangles meeting at any vertex is an integral 
multiple of q. This rule will apply to a model in which each site j has a variable t j  that 
can be in one of q states 0 to q - 1. The energy around each elementary triangle j k l  is 

0 i f t j + t k + t ,  = Omodq 
otherwise. Ejkl= { 

The graphical representation for the low-temperature expansion involves dividing the 
faces of the triangular lattice according to  the parity of the triangle (ie separating ‘up’ 
pointing triangles from ‘down’ pointing triangles). For the graphical expansion, tri- 
angles of one parity have their graph indices given by ( t j +  t k  + t r )  mod q, while triangles 
of the other parity have their graph indices given by ( -tj-t,-t,)mod q. The con- 
straint above follows by simple addition. 

The weights of graphs are given by the products of the weights of the basic elements, 
faces of index 0 contributing 1, and other faces contributing U = exp( - p J ) .  The low- 
temperature (LT) expansion is 

Z L T  = q2 c 
allowed nonzero 
graphs faces 

The factor q2 corresponds to the number of ground states since any pair of neighbours 
can be set into arbitrary states, but this choice will then determine the ground state for 
the whole lattice. 

The high-temperature (HT) partition function is given by 

configurations 
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We construct an array V by 

j + k + l =  Omodq it otherwise qtl = exp(-bEjkl) = 

and relate V to a 'diagonalized' form 

q k l  = 1 AjmAkmAlmAm 
m 

where 
A ,  Jm = q-'13 exp(ijm/q) 

I",  = 1 +(q-  1)u 

A j =  1 - U  j # 0. 

i =  J - 1  

At each vertex there is a product 
6 

(4) 

(AkmJAmJ)  
j =  1 

to be summed over all values of k .  The product gives 

4 - l  n AnJ x m j = O m o d q  

0 otherwise. 
j j 

This means that we can set up a graphical representation with triangles indexed by j 
having a contribution Aj .  

The high-temperature expansion is 

z,, = nq-' n [ l + ( q - l ) u l  1 n (1 -u ) / [ l+ (q- l )uI .  
sites faces allowed nonzero 

graphs faces 

Since the number of faces is twice the number of sites, the transformation 

transforms the low-temperature expansion for the partition function into the high- 
temperature expansions multiplied by { q/[1+ (q - 1 ) ~ ] ~ } ~ ~ ~ ~ ~ ~ ~  si'es 

If there is a unique transition point then it must occur at 

U = (1 -u)/[l + ( q -  l)u], 

U0 = ( l + J q ) - ' .  (10) 

whence 

At this point the initial multiple q/[1 +u(q-  1)]* reduces to 1 as it must for equality of 
the partition function expressions. The initial factor q2 that appears in the low-tempera- 
ture expression ( 2 )  becomes insignificant in the thermodynamic limit as will any of the 
neglected boundary corrections. 

Since these expressions are equivalent to those for the q-state Potts model on the 
square lattice we can use the results of Potts (1952) and Kihara et a1 (1954) to give the 
critical energy E, = 1 - q - " *  assuming a continuous transition and taking the fully 
aligned state as the zero of energy. These results for U,, E, agree with previous work on 
the q = 2 case for the triplet Ising model, but for other q values nothing is known of the 
behaviour of the model. 
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3. The triplet Ashkin-Teller analogue 

For a four-state system it is possible to find a more general model which has a unique 
self-dual point. This model includes the four-state triplet model of 0 2, and also a system 
of two independent triplet models as special cases. There is an obvious analogy with 
the Ashkin-Teller model (Ashkin and Teller 1943) which has as special cases the four- 
state Potts model and a system of two independent Ising models. 

The vertex constraint is the same as the q = 4 constraint used in 8 2. The difference 
is that elementsof types 1 and 3 are given weightsdifferent from those of type 2. The energy 
1s 

j + k + l =  Omod4 
j + k + l =  + l m o d 4  
j + k + l =  2mod4. 

The special cases are J = K corresponding to equation (1) and J = 2K corresponding 
to two independent triplet Ising models. 

The same transformation A j ,  is used to give the diagonal elements 

io = 1+2u+w (12a) 

I 1  = I ,  = 1-w (12b) 

I ,  = 1-2u+w ( 124 

U = exp( - 1 J )  
w = exp( -1K). 

The low-temperature expansion is 

z,, = q2 c n w  
allowed Pdces faces 
graphs 1.3 , 

while the high-temperature expansion is 

graphs 

It turns out that there is a self-dual point at  which 

;io = 1 

I1 /Ao = U 

,I2/& = w 

2u+w = 1. (15) 

and this point is given by 

For any positive J ,  K there will be a temperature at  which (15) is satisfied. 
For the special cases equation (15) will give the critical point if it is unique. In other 

cases the transformation will transform the low-temperature expressions into high- 
temperature expressions for a different pair of J ,  K values and the uniqueness assump- 
tion is not sufficient to show that (15) gives the critical point. 
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What can be done is to consider the point 23 = K and then treat J ,  = $ J - $ K  as 
a perturbation. Equation (15) gives 

$K d p c / 5 J 2  = -p,J2. (16) 

The same value of d p c / a J 2  can also be obtained from perturbation expansions of the 
type considered by Kadanoff and Wegner (1971), and using the critical amplitudes 
given by Baxter and Wu (1974). 

The perturbation expansion was performed by interpreting the energy (1 1) in terms 
of a triangular lattice with two spins cr;, Si = f at each site. Equation (11) corresponds 
to a Hamiltonian 

While equation (16) suggests that equation (15) gives the critical point for sufficiently 
small J , ,  for J ,  > $ K ,  we can apply the symmetry arguments of Wegner (1972) to 
predict that two transitions will occur, as in the Ashkin-Teller model. 

4. The non-local random cluster expansion 

In 0 2 we defined the q-state triplet model in terms of a q-state local site variable and the 
vertex constraint in terms of a sum over indices that can take one of q values. This ap- 
proach is obviously restricted to integral 4. I t  has, however, been possible to generalize 
the q-state Potts model (Fortuin and Kasteleyn 1972) into a form with a two-state edge 
variable and no local constraint. The value of 4 appears as an arbitrary real parameter, 
which for integral 4 leads to a partition function equivalent to  that of the q-state Potts 
model. 

The random cluster model on an arbitrary lattice is defined by 

(18) 

The set E is the set of all lattice edges so that the sum is over all weak subgraphs. y(C) is 
the number of components in the graph C. This appears to be a completely free summa- 
tion, but in fact for the square lattice we can use a global constraint to generate a trans- 
formation. We put 

(19) 

z = (1 -u)IclulE-ClqY(C). 

C S E  

U = (1 -w)/[1+(4- l)w] 

to give 

where N is the number of vertices, +[El. 

given by the Euler formula 
The constraint that enables us to complete the transformation is the global constraint 

Faces = components + edges - vertices + 1 
or 
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Ifwe transform the edges ofa weak graph C into the absence ofan edge on the dual lattice, 
and the edges of set E - C into a graph on the dual lattice, then the number of components 
of the dual lattice graph will be the number of faces of the original graph C. 

In other words 

Z(u) = q-l{Jq/[1 +(q-l)w]}’“’Z(w). (23) 

Again, the initial factor becomes negligible and will in fact depend on the boundary 
conditions chosen. This duality transformation in a form appropriate to arbitrary q 
has been given previously by Baxter (1973). 

The ‘random cluster’ formulation of the q-state triplet model is given by 

The set C is a set of triangles and F is the set of all triangular faces. 6(C) is obtained by 
considering a system whose only interactions are on the set of faces C. 

Taking the number of ground states of such a system to be q6“’ defines 6(C). We 
have not been able to find a way of expressing 6(C) in terms of graph variables, and so we 
have no indication of how to go about setting up a duality transformation for non- 
integral q. 

To show that equation (24) is in fact the partition function for the q-state triplet Potts 
model, we derive a recursion relation from equation (2) considering the partition func- 
tion on a graph G. Splitting the summation over all configurations into terms with 
face e in the ‘0’ ground state and terms with face e nonzero gives 

q - 2 Z ( G ) = x n U =  ~ U + U  n U 
G : e = O  G G:efO G - e  G G  

and considering a graph G - e,  

q - ’ Z ( G - e ) =  n U +  n U 
G - e : e = O  G - e  G - e : e t O  G - e  

so that 

Z(G)  = q2(1 - U )  1 n u+q2uZ(G-e ) .  
G : e = O  G - e  

The summations denote summing over all configurations and the products are over 
all perturbed faces of the graph G (or G - e). Iteration of equation (27) leads to equation 
(24) with 6(C) as described above. 

Conclusions 

We have discussed some new classes of self-dual models with q-state variables and three- 
site interactions. It should be noted that on the face-centred cubic lattice an Ising system 
with pure four-spin interactions is self-dual (Wood 1972). This model can be generalized 
to a q-state system with the energy being 0 or J when, at each vertex, Eti mod q is 0 or 
nonzero. The transformation A j ,  is q-  1/4 exp(ijm/q). The factor q-  combines with the 
A0 factors to give 1 at  the self-dual point because the number of tetrahedra is twice the 
number of sites. Since series analysis for the q = 2 case has been interpreted as indicating 
two transitions (Wood and Griffiths 1973) we do  not pursue this model further. A random 
cluster form can be obtained, again with 6(C) in terms of the ground states of C. This 
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type of analysis is complicated by the fact that the number of ground states of the system 
as a whole is of order q3JN.  

Apart from the interest in the self-dual models, the random cluster formulation of 
these models exhibits a number of interesting properties. This formulation appears to 
have suppressed all the symmetry of the q-state models so that the definition can be 
extended to non-integral q. In such a case it becomes inappropriate to ask how the critical 
behaviour depends on the symmetries of the model and some alternative approach is 
needed. The other interesting feature of the random cluster formulation is the fact 
that a single global constraint was used to generate the square lattice duality transfor- 
mation. This approach is rather different to previously known transformations as 
formalized by Wegner (1972). It would be of considerable interest to obtain a similar 
transformation for the multi-site q-state models, but it has not been possible to find one 
as yet. 
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